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ABSTRACT. Zinc oxide nanoparticles (ZnONP) are among the most widely produced nanomaterials
worldwide given their unique properties, despite their nanotoxicity has been poorly addressed. In paral-
lel, environmental concern has risen because of increasing amounts of them reaching the environmental
matrices, whereas the aquatic ones are one of the main final sinks. As key non-target species, we aimed
to expose the invasive freshwater bivalve Limnoperna fortunei to sublethal concentrations of ZnONP (O,
0.025, 0.25, and 2.5 mg/L) to evaluate tissue damage and oxidative stress-related markers in the soft
tissue. After a 96 h-exposure, the alkaline phosphatase enzyme activity increased after 0.025 mg/L, and
the alanine aminotransferase activity decreased at 2.5 mg/L. Aspartate aminotransferase enzyme activ-
ity also decreased at 0.25 and 2.5 mg/L. In terms of oxidative stress, only superoxide dismutase activity
increased after exposure to the lowest nanozinc concentration. We concluded that nanozinc may pose a
threat to the aquatic biota in a context that lacks proper regulation and control for nanopollutants, and
that the toxicity mechanisms in this species are mainly related to tissue damage, even at environmen-
tally relevant concentrations, as the lowest one tested.
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1. Introduction therefore, rising concern about their environmental

fate, and interaction with non-target biota is in need to
be addressed (Santos-Rasera et al., 2022). Particularly,
when reaching the aquatic environments, ZnONP suf-
fer from multiple transformations, which will depend
on other factors (e.g., temperature, UV irradiation, or
presence of organic matter), such as dissolution (and Zn
ion release), agglomeration, and further sedimentation.
The latter may enhance the bioavailability for benthic
organisms; however, only a few studies were conducted
on this animal group (Yung et al., 2014).

Nanotechnology is a field of study under expan-
sion that involves the synthesis and manipulation of
materials (nanomaterials, NM) at a scale of 1 to 100
nm. Among the wide variety of NM, metallic-based
ones have been of particular interest due to their unique
properties in terms of catalysis, optics, and antimicro-
bial action (Pal and Pareek, 2025). Zinc oxide nanopar-
ticles (ZnONP) are one of the most applied NM world-
wide, after silica- and titanium-based NM. For example,
they are extensively used in solar cells, optoelectronic There is some robust evidence that ZnONP exert
devices, biomedicine, antibacterial materials, and per-  geleterious effects on aquatic biota (Abdel-Halim et al.,
sonal care products (Wu et al., 2025). Their global 2020; Marisa et al., 2016a; Saidani et al., 2019; Zhao

annual production reaches up to 36,000 tons, and the et al., 2016); however, these particles were studied to a
predicted environmental concentrations are in the low lesser extent in terms of ecotoxicology (in comparison

range of 0.17 ug/L (Ale et al., 2024). However, through with, for example, Ag- or Ti-based NM) (Gutierrez et
their multiple applications, the NM are released into the al., 2021). Mollusks were considered particularly sen-
environment in increasing amounts. In this sense, it was  gjtjve to nanopollutants given both their filter-feeding
proven that NM are released during all their life cycle;  5nq sessile habits (Skawina et al., 2024). Furthermore,
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according to the available bibliography, freshwater
mollusks were even less studied in comparison with
the marine ones, altough the toxicity mechanisms of
any NM were proved to differ according to the ionic
strength of the media. In other words, among other
environmental factors, the ultimate nanotoxicity of
freshwater environments differs extensively from the
marine ones (Petosa et al., 2010; Yung et al., 2014).
Therefore, there is currently a need for further research
on the ecotoxicology of nanozinc, with emphasis on
freshwater biota.

Oxidative stress is the most reported toxicity
mechanism from nanozinc (and most NM) exposure.
For example, the freshwater mussel Elliptio complanata
showed altered antioxidant enzyme activities and lipid
peroxidation in the soft tissue (apart from weight loss)
after exposure to ZnONP (Gagné et al., 2013). Similarly,
the freshwater snail Lymnaea luteola showed altered
antioxidant enzyme activities and DNA damage in the
digestive gland (Ali et al., 2012). Finaly, DNA damage,
altered antioxidant enzyme activities, oxidative dam-
age in lipids and proteins, and bioaccumulation were
evidenced in the Limnoperna fortunei bivalve exposed to
high concentrations of ZnONP (Girardello et al., 2021).
Other less-studied biomarkers in the nanotoxicology
field are tissue damage-related enzymes. For example,
serum from fish exposed to ZnONP had low transami-
nase activity (Rasheed et al., 2023), but the tissue of
the freshwater snail Biomphalaria alexandrina showed
increased activity (Fahmy et al., 2014).

The golden mussel Limnoperna fortunei (Dunker,
1857) is native to Southeast Asia, being highly recog-
nized for invading the aquatic ecosystems worldwide
(Barbosa, 2014). Their wide availability, easy adapta-
tion to laboratory conditions, and sensitivity have made
them promising sentinel species for assessing early
warning responses (Vereycken and Aldridge, 2023).
This work includes an independent preliminary study
that was conducted prior to another recently published
work that has also employed L. fortunei as test species
and nanozinc exposures (Ale et al., 2025). In order to
deepen the understanding of this emerging nanopollut-
ant, the present study aims to evaluate the sublethal
effects of ZnONP in terms of oxidative stress and tissue
damage in this freshwater bivalve species.

2. Materials and methods
2.1. Zinc oxide nanoparticles (ZnONP)

The particles were purchased from Sigma-
Aldrich® (Product number 721077), guaranteeing
their purity and stability. According to the Certificate
of Analysis, the particles resulted correctly dispersed in
the media (H,0), pH 8.9, and their size was reported as
40 nm. The stock concentration was 19% wt.

The complete particle characterization has been
reported in Ale et al. (2025). The transmission electron
microscopy (TEM) analysis revealed that the ZnONP
had an average primary diameter of approximately 27
nm with some degree of agglomeration. On the other
hand, analysis by dynamic light scattering (DLS) con-
firmed the ZnONP aggregation in aqueous suspension
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by showing large agglomerates (630 = 207 nm). Finally,
the zeta potential was reported as —26.09 = 0.79 mV,
suggesting moderate colloidal stability.

2.2. Bivalves and exposure conditions

In March 2024 (summer season), the bivalves
(adults, n=25) were manually collected from a dock
on the shore of Rio Santa Fe (a secondary channel of
the Middle Parana River, 31°38’34.90” S; 60°41’6.22”
W). This bioassay was conducted independently and in
parallel to the study reported in Ale et al. (2025), using
organisms collected at different time points. All exper-
imental procedures, from bivalve collection to bio-
marker determination, were performed separately. The
acclimatation procedure was described by Cazenave et
al. (2025). After the bivalves were transferred to the
laboratory (in plastic containers with natural river
water), they were carefully separated and brushed to
remove the biofilm. For the first 24 h, they were kept
in a medium composed of half natural river water and
the other half with dechlorinated tap water, always
with oxygenation, at 27 = 1°C by employing incubators.
The temperature was based on the mean temperature
in their habitat in summer (Iriondo and Paira, 2007).
Then, the bivalves were kept in dechlorinated tap
water for 48 h, with a 16/8 h photoperiod (light/dark-
ness) and algae-based food (Tetradesmus obliquus algae
culture) ad libitum until 24 h before starting the final
experiments. When an individual was attached and
showed signs of valve activity in response to physical
stimuli, it was considered healthy. At the beginning of
the experiment, the organisms’ mean length and weight
were 29.33+2.31 mm and 1.83+0.42 g, respectively
(and they were also weighed at the end of it).

2.3. Experimental design

The lowest concentration of ZnONP tested was
chosen based on the previously reported Zn environ-
mental concentration for urban surface and munici-
pal effluents (0.010-0.050 mg/L) (Clara et al., 2012;
Gagnon et al., 2014). For the higher concentrations, it
was contemplated that non-lethal nanozinc concentra-
tions for the test species (L. fortunei) were in the range
of 1-50 mg/L (Girardello et al., 2021).

The experiment involved 250 mL aquaria with O
(control), 0.025, 0.25, or 2.5 mg/L of ZnONP, and the
exposure period was 96 hours. The conditions remained
similar to the acclimatation procedure (dechlorinated
tap water with constant aeration, 27 +1°C, and a 16/8
h light/darkness photoperiod). The experimental unit
was defined as an aquarium with five organisms, which
was replicated three times per treatment. The particle
administration was performed directly into the aquar-
ium, before the corresponding dissolution with ultra-
pure water. Treatments were renewed every 24 hours,
so ZnONP dissolutions were prepared daily from the
stock to avoid particle transformation and/or agglom-
eration. The bivalves were not fed during the bioas-
say. The water conditions were always monitored,
which remained similar before and after the renewal
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procedure: pH = 7.66+0.15 and conductivity =
165+ 10 puS/cm. No mortality was recorded during the
trial, except for the highest ZnONP concentration (2.5
mg/L), which was <10%. At the end, the soft tissue of
each organism was extracted and stored at -80°C until
the biomarker determinations.

2.4. Sublethal biomarker assessment

The soft tissue of each bivalve was homoge-
nized to determine enzyme tissue damage according to
Bacchetta et al. (2011) and oxidative stress markers fol-
lowing the technique proposed by Reglero et al. (2009)
(n=5 per biomarker type). Enzyme activities of alanine
aminotransferase (ALT), aspartate aminotransferase
(AST), and alkaline phosphatase (ALP) were measured
through the methodology proposed by Reitman and
Frankel (1957) with commercial kits (Wiener Lab®).

Oxidative stress was determined by measur-
ing the antioxidant activities of superoxide dismutase
(SOD) by the technique proposed by Misra and
Fridovich (1972); catalase (CAT)-by following the pro-
cedure according to Beutler (1982), and glutathione
S-transferase-by employing the technique suggested
by Habig et al. (1974). Finally, lipid peroxidation lev-
els (LPO) were calculated by the thiobarbituric acid
reactive substances (TBARS) assay according to Yagi
(1976). Each sample was measured in triplicate, and all
the results were expressed in terms of protein content
(Bradford, 1976).

2.5. Statistics

Data are reported as mean * standard error. The
Shapiro-Wilks and Levene’s tests were applied to eval-
uate normality and homogeneity of variance, respec-
tively. Variables without a normal distribution were
transformed using 1og10 and tested again before para-
metric analysis. For statistical data comparisons among
the treatments, 1-way ANOVA followed by Tukey
post-test was used for normally distributed data, and
the Kruskal-Wallis test—for non-normally distributed
data. All statistical analysis was performed using the
InfoStat software (Universidad Nacional de Cérdoba,
Argentina).

3. Results and discussion

At the end of the experiment (after 96 h), the
bivalves were weighed again, and at the highest ZnONP
concentration (2.5 mg/L), a significant increase in the
weight was evidenced in comparison with the remain-
ing treatments (p=0.0388) (Table 1). Furthermore,
at dissection time (when the mollusk valves were
removed), the soft tissue of them was found to be light
white compared to the other treatments (observational
feature).

Additionally, we observed a white mucus secre-
tion in the case of the highest exposure, which started
after 48 h of exposure and became more obvious after
72 h (observational feature) (Fig. 1).

Interestingly, similar visualizations were made
in this species but with exposure to titanium dioxide
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nanoparticles (TiO,NP) (Manske Nunes et al., 2018).
After microscopy analysis, the authors corroborated
the presence of Ti in the mucus and explained that its
production is a defense mechanism against the toxic
effects caused by the nanopollutant. The white mucus
secretion observed and the augmented weight of the
exposed bivalves at 2.5 mg/L could confirm that the
particles were actually captured by the organisms and
potentially accumulated in the tissue. In this regard,
Rojas Molina et al. (2010) explained that L. fortunei is
capable of selectively ingest and retain particles span-
ning a broad size range (approximately 1-1000 um),
while smaller particles (=1 um) are typically aggre-
gated and expelled as pseudofeces (Frau et al., 2016).
However, when the particles lose stability and suffer
from physical and chemical transformations such as ion
dissolution, the released Zn ions may play a crucial role
in metal bioaccumulation, as there is robust evidence
that nanozinc can bioaccumulate in the tissue of fresh-
water and marine bivalves. For example, high levels of
total Zn were found in Dreissena bugensis exposed to 50
ug ZnONP/L for 96 h (Auclair et al., 2020), and similar
results were obtained for the Unio tumidus, Xenostrobus
secures, and Mytilus galloprovincialis marine mussels
exposed to ZnONP (Falfushynska et al., 2015; Hanna et
al., 2013; Lai et al., 2023).

Table 1. Final weight of L. fortunei (whole organism)
exposed to 0, 0.025, 0.25, and 2.5 mg ZnONP/L. The values
are expressed as means * SE. Means not sharing the same
superscript (A or B) are significantly different at p<0.05.

Treatment Final weight (t=96 h)
(mg ZnONP/L) (8
Control 1.48 = 0.094
0.025 1.87 = 0.13 48
0.25 1.82 £ 0.20 48
2.5 2.15 £ 0.16 B

y \ P s
Fig.1. Individuals of L. fortunei belonging to (a) the con-
trol group (after 72 h) and exposed to 2.5 mg ZnONP/L for
(b) 48 h and (c, d) 72 h. White arrows show the light white
mucus secretion of the bivalves (the remaining treatments are
not shown, as they visually resembled the control group).

a
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Fig. 2 shows the tissue-damage-related enzyme
activities in the soft tissue of L. fortunei exposed
to ZnONP. Both ALT and AST enzyme activities
decreased after the highest ZnONP exposure (2.5 mg/L)
(p=0.0409 and p=0.0295, respectively), meanwhile
ALP increased after the lowest concentration tested
(0.025 mg/L) (p=0.0331).

Enzyme tissue damage-related biomarkers
showed to be particularly sensitive to nanozinc expo-
sure. However, it is challenging to discuss our findings,
as, to the best of our knowledge, ZnONP-related ecotox-
icity has not been addressed in the soft tissue of bivalves.
Our recent study (Ale et al., 2025) reported comparative
nanozinc toxicity in terms of different temperatures,
and for the one similar to the employed in this study
(27 °C), similar tendencies for AST decreased enzyme
activity were also evidenced at all the concentrations
tested. Conversely, discrepant results were found with
ALT activity; while no effects were observed in the
other study, which employed a lower ZnONP concen-
tration. Here, we evidence an inhibition of the enzyme
activity in soft tissue of bivalves exposed to the highest
concentration (2.5 mg ZnONP/L). In this regard, the
augmented particle (and metal) concentration could
have exceeded the enzyme capacity to avoid tissue
damage, or even the active site of the enzyme could
also have been affected, causing its activity inhibition.
For ALP, here we evidence an increased enzyme activ-
ity at the lowest concentration tested (0.025 mg/L);
however, in Ale et al. (2025) its activity has been found
to be decreased, suggesting that ecotoxicity of ZnONP
is clearly affected by the biological responses of the test
organisms. Although all organisms were collected from
the same sampling site (but during different collection
events, specifically in different months during the sum-
mer of 2024), complex variations in their habitat could
be attributed to their discrepant sensitivity, as these
organisms are considered tolerant to changes in river
flow- and climate-related variables. In this regard, fur-
ther studies of nanopollutant exposures to freshwater
bivalves are highly necessary.

Other studies of mollusks exposed to different
stressors like metals and even nanoplastics identi-
fied alterations of these enzyme activities (Brandts et
al., 2022; Kokhan et al., 2024; Li et al., 2012; Narvia
and Rantamadki, 1997). In case of freshwater species,
increased enzyme activities of transaminases (ALT and

ALT
25 -

20 A

mU/mg protein
mU/mg protein

AST

IR

AST) and ALP were found in serum of Cyprinus carpio
injected with ZnONP, and it was explained that the par-
ticles caused dysfunction in the kidney of fish (Rasheed
et al., 2023). In terms of mollusks, an interesting study
made on the freshwater snail Biomphalaria alexandrina
exposed to 7.35 mg ZnONP/L evidenced transaminases
and ALP increased both in hemolymph and soft tissue
of the organisms. Such results were related to muscle
damage, intestinal and hepatopancreatic injuries, and
toxic hepatitis in the snail (Fahmy et al., 2014). This
study clearly indicates damage in the soft tissue of L.
fortunei after the highest nanozinc concentrations tested
(0.25 and 2.5 mg/L).

Table 2 shows oxidative stress-related biomark-
ers. Only SOD activity was increased with exposure
to the lowest ZnONP concentration (0.025 mg/L)
(p=0.0394), while no differences were found for the
remaining treatments, neither for the other antiox-
idant enzymes nor peroxidation levels in comparison
with the control group. In this context, we highlight
the need for studies under realistic conditions, as the
actual nanotoxicity could be underestimated.

Nanoparticles were closely associated with cyto-
toxicity by increasing intracellular reactive oxygen
species (ROS) and the levels of the proinflammatory
mediator; thus, the homeostatic redox state of the test
organism becomes disrupted upon ROS induction by
NP (Khanna et al.,, 2015). Their related biomarkers
were widely reported throughout the available litera-
ture in terms of nanotoxicity in aquatic organisms (Ale
et al., 2024; 2021; Cazenave et al., 2019; Gutierrez et
al., 2021). In the case of ZnONP, it was explained that
their metabolisms in cells generate ROS overproduc-
tion, leading to oxidative damage (Zhao et al., 2016).
However, the LPO levels analyzed in soft tissue of L.
fortunei showed no changes in comparison with the
control group. Among the available literature, aug-
mented LPO levels with ZnONP exposure were found
at much higher concentrations than those tested in
this study. For example, in a tissue of the freshwater
snails Lymnaea luteola and Biomphalaria alexandrina,
increased LPO levels (measured by malondialdehyde
content, MDA) were evidenced at 7-32 mg ZnONP/L
(Ali et al., 2012; Fahmy et al., 2014). Accordingly, Zhao
et al. (2016) exposed the Danio rerio fish to increasing
ZnONP concentration and found increased MDA levels
only at higher concentrations (from 10 mg/L onwards,

ALP
200 -

160
120 A

80

B
A A
| i
A
0 - I

mU/mg protein

Control  0.025mg/L  0.25mg/L  2.5mg/L Control

0.025 mg/L  0.25 mg/L

40
2.5mg/L Control  0.025 mg/L 0.25mg/L 2.5 mg/L

Fig.2. Tissue damage-related enzyme activities: alanine aminotransferase (ALT), aspartate aminotransferase (AST), and
alkaline phosphatase (ALP) in soft tissue of L. fortunei exposed to 0, 0.025, 0.25, and 2.5 mg ZnONP/L for 96 h. The values are
expressed as means = SE. Means not sharing the same superscript (A or B) are significantly different at p<0.05.
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Table 2. Oxidative stress-related enzyme activities: superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase
(GST), and lipid peroxidation levels (LPO) in soft tissue of L. fortunei exposed to 0, 0.025, 0.25, and 2.5 mg ZnONP/L for 96 h.
The values are expressed as means = SE. Means not sharing the same superscript (A or B) are significantly different at p <0.05.

Treatment SOD CAT GST LPO
(mg ZnONP/L) (U/mg protein) (U/mg protein) (mU/mg protein) (nmol TBARS/mg protein)
Control 348.3 = 54.44 6.7 = 0.7 72.0 = 134 0.6 = 0.2
0.025 608.3 + 62.8 B 6.6 = 0.9 98.3 + 15.6 1.0 £ 0.1
0.25 446.1 * 48.6 18 6.6 = 0.9 89.9 + 8.9 0.9 = 0.2
2.5 551.9 + 32.7 4B 7.0 £ 0.7 90.3 = 6.0 0.9 = 0.1

up to 120 mg/L). Therefore, our tested concentrations
may not generate enough oxidative damage to be evi-
denced after 96 h of exposure.

Concerning the measured antioxidant enzyme
activities, only SOD was evidenced to differ from the
control values (Table 2). Interestingly, the increase in
its activity was only at the lowest ZnONP concentra-
tion assayed (0.025 mg/L), suggesting that the exerted
nanotoxicity may not be concentration-dependent in
this case. Therefore, studies that employ only high NP
concentrations and do not consider environmentally
relevant exposure conditions may underestimate the
actual ecotoxicological scenario. In our previous work,
we have also observed SOD activation with L. fortu-
nei exposure to low ZnONP concentrations (Ale et al.,
2025). One explanation for this result could be related
to the lower dispersion of the NP at higher concentra-
tions (and reduced bioavailability), as it was already
proved for AgNP in the marine mussel Saccostrea glom-
erata (Carrazco-Quevedo et al., 2019). The importance
of SOD in maintaining the homeostatic redox state lies
in being the first one to handle oxyradicals, particularly,
for catalyzing the dismutation of the superoxide radi-
cal O* to hydrogen peroxide (Zhao et al., 2016). Other
studies of mussels also found increased SOD activities.
In this regard, Falfushynska et al. (2015) exposed the
freshwater mussel Unio tumidus to ZnONP for 14 days
(concentration reported as 3.1 uM) and explained that
SOD augmented activity was due to the ROS overpro-
duction. Furthermore, under environmentally relevant
nanozinc concentrations (1 and 10 pg/L), SOD activity
increase was evidenced in gills and digestive gland of
marine mussels Ruditapes philippinarum and Xenostrobus
secures (Lai et al., 2023; Marisa et al., 2016b).

4. Conclusions

Nanotoxicity is induced in complex ways that are
in urgent need of further investigation. The ultimate
toxicology on test organisms will depend on the particle
type, poorly assessed ZnONP (when compared to others
like Ag- and Ti-based), the released media (freshwater
or marine), intrinsic properties, and biology of the test
organism, among others. The latter results are particu-
larly important, as bivalves are not only filtering-feed-
ing organisms but also vulnerable to further agglomer-
ation and sedimentation of the NM due to their sessile
habits. We conclude that L. fortunei was sensitive to
the tested ZnONP, which could be considered low (in
comparison to the available bibliography), even at the
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lowest concentration that is regarded as environmen-
tally relevant. Finally, we highlight the urgent need for
further studies assessing the toxicological implications
associated with this nanopollutant, with emphasis on
freshwater mollusks and realistic exposure conditions.
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